Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available October 1, 2026
- 
            Generative AI (GenAI) has brought opportunities and challenges for higher education as it integrates into teaching and learning environments. As instructors navigate this new landscape, understanding their engagement with and attitudes toward GenAI is crucial. We surveyed 178 instructors from a single U.S. university to examine their current practices, perceptions, trust, and distrust of GenAI in higher education in March 2024. While most surveyed instructors reported moderate to high familiarity with GenAI-related concepts, their actual use of GenAI tools for direct instructional tasks remained limited. Our quantitative results show that trust and distrust in GenAI are related yet distinct; high trust does not necessarily imply low distrust, and vice versa. We also found significant differences in surveyed instructors' familiarity with GenAI across different trust and distrust groups. Our qualitative results show nuanced manifestations of trust and distrust among surveyed instructors and various approaches to support calibrated trust in GenAI. We discuss practical implications focused on (dis)trust calibration among instructors.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            As climate mitigation efforts lag, dependence on anthropogenic CO2removal increases. Enhanced rock weathering (ERW) is a rapidly growing CO2removal approach. In terrestrial ERW, crushed rocks are spread on land where they react with CO2and water, forming dissolved inorganic carbon (DIC) and alkalinity. For long-term sequestration, these products must travel through rivers to oceans, where carbon remains stored for over 10,000 years. Carbon and alkalinity can be lost during river transport, reducing ERW efficacy. However, the ability of biological processes, such as aquatic photosynthesis, to affect the fate of DIC and alkalinity within rivers has been overlooked. Our analysis indicates that within a stream-order segment, aquatic photosynthesis uptakes 1%–30% of DIC delivered by flow for most locations. The effect of this uptake on ERW efficacy, however, depends on the cell-membrane transport mechanism and the fate of photosynthetic carbon. Different pathways can decrease just DIC, DIC and alkalinity, or just alkalinity, and the relative importance of each is unknown. Further, data show that expected river chemistry changes from ERW may stimulate photosynthesis, amplifying the importance of these biological processes. We argue that estimating ERW’s carbon sequestration potential requires consideration and better understanding of biological processes in rivers.more » « lessFree, publicly-accessible full text available April 4, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Abstract Precise control over light polarization is critical for advancing technologies in telecommunications, quantum computing, and image sensing. However, existing methods for manipulating polarization around exceptional points (EPs) in non‐Hermitian systems have exclusively focused on circular polarization and work with reflected light. To address this limitation, a novel metasurface platform with high‐Q resonators is developed that enables tunable control of polarization exceptional points across arbitrary ellipticity for transmitted light. This design employs orthogonally polarized guided mode resonators in a two‐layer silicon metasurface, where careful tuning of the dipolar guided mode resonances (DGMRs) and layer spacing allows us to control the ellipticity of EPs. By leveraging high‐quality factor resonances, strong orthogonal mode coupling over distances up to a quarter wavelength is achieved. This platform exhibits omnipolarizer behavior and the corresponding phase singularity can imprint phase shifts from 0 to 2π with small perturbations in the geometry. This approach opens new possibilities for polarization control and programmable wavefront shaping, offering significant potential for next‐generation optical devices.more » « less
- 
            Archaeal membrane lipids are widely used for paleotemperature reconstructions, yet these molecular fossils also bear rich information about ecology and evolution of marine ammonia-oxidizing archaea (AOA). Here we identified thermal and nonthermal behaviors of archaeal glycerol dialkyl glycerol tetraethers (GDGTs) by comparing the GDGT-based temperature index (TEX 86 ) to the ratio of GDGTs with two and three cyclopentane rings (GDGT-2/GDGT-3). Thermal-dependent biosynthesis should increase TEX 86 and decrease GDGT-2/GDGT-3 when the ambient temperature increases. This presumed temperature-dependent (PTD) trend is observed in GDGTs derived from cultures of thermophilic and mesophilic AOA. The distribution of GDGTs in suspended particulate matter (SPM) and sediments collected from above the pycnocline—shallow water samples—also follows the PTD trend. These similar GDGT distributions between AOA cultures and shallow water environmental samples reflect shallow ecotypes of marine AOA. While there are currently no cultures of deep AOA clades, GDGTs derived from deep water SPM and marine sediment samples exhibit nonthermal behavior deviating from the PTD trend. The presence of deep AOA increases the GDGT-2/GDGT-3 ratio and distorts the temperature-controlled correlation between GDGT-2/GDGT-3 and TEX 86 . We then used Gaussian mixture models to statistically characterize these diagnostic patterns of modern AOA ecology from paleo-GDGT records to infer the evolution of marine AOA from the Mid-Mesozoic to the present. Long-term GDGT-2/GDGT-3 trends suggest a suppression of today’s deep water marine AOA during the Mesozoic–early Cenozoic greenhouse climates. Our analysis provides invaluable insights into the evolutionary timeline and the expansion of AOA niches associated with major oceanographic and climate changes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
